On the facets of mixed integer programs with two integer variables and two constraints
نویسندگان
چکیده
منابع مشابه
On the Facets of Mixed Integer Programs with Two Integer Variables and Two Constraints
In this paper we consider an infinite relaxation of the mixed integer linear program with two integer variables, nonnegative continuous variables and two equality constraints, and we give a complete characterization of its facets. We also derive an analogous characterization of the facets of the underlying finite integer program.
متن کاملOn mixed-integer sets with two integer variables
We show that every facet-defining inequality of the convex hull of a mixed-integer polyhedral set with two integer variables is a crooked cross cut (which we defined in 2010). We extend this result to show that crooked cross cuts give the convex hull of mixed-integer sets with more integer variables if the coefficients of the integer variables form a matrix of rank 2. We also present an alterna...
متن کاملPerspective reformulations of mixed integer nonlinear programs with indicator variables
We study mixed integer nonlinear programs (MINLP)s that are driven by a collection of indicator variables where each indicator variable controls a subset of the decision variables. An indicator variable, when it is “turned off”, forces some of the decision variables to assume fixed values, and, when it is “turned on”, forces them to belong to a convex set. Many practical MINLPs contain integer ...
متن کاملTwo Families of Facets for the Two-Dimensional Mixed Integer Infinite Group Problem
In this paper, we lay the foundation for the study of the two-dimensional mixed integer infinite group problem (2DMIIGP). We introduce tools to determine if a given continuous and piecewise linear function over the two-dimensional infinite group is subadditive and to determine whether it defines a facet. We then present two different constructions that yield the first known families of facet-de...
متن کاملTwo-Step MIR Inequalities for Mixed Integer Programs
Two-step MIR inequalities are valid inequalities derived from a facet of a simple mixedinteger set with three variables and one constraint. In this paper we investigate how to effectively use these inequalities as cutting planes for general mixed-integer problems. We study the separation problem for single constraint sets and show that it can be solved in polynomial time when the resulting ineq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2008
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-008-0221-1